LIF transduces contradictory signals on capillary outgrowth through induction of stat3 and (P41/43)MAP kinase.

نویسندگان

  • H Paradis
  • R L Gendron
چکیده

The signaling pathways regulating blood vessel growth and development are not well understood. In the present report, an in vitro model was used to identify signaling pathways regulating capillary formation in embryonic endothelial cells. Basic fibroblast growth factor (bFGF) plus leukemia inhibitory factor (LIF) optimally stimulate the formation of capillary-like structures of the embryonic endothelial cell line IEM. LIF stimulation of IEM cells leads to activation of the Stat3 as well as the (P41/43)mitogen-activated protein kinase ((P41/43)MAPK) cascade, while bFGF does not activate Stat3 but does induce the (P41/43)MAPK cascade. Inhibition of Stat3 DNA-binding activity by expression of a dominant inhibitory Stat3 mutant increases the capillary outgrowth of the IEM cells induced by LIF. Increased Stat3 activity by overexpression of the wild-type Stat3 greatly reduced capillary outgrowth. In contrast, inhibition of the (P41/43)MAPK cascade using a MEK-1 inhibitor dramatically inhibits the LIF-induced capillary outgrowth. Moreover, the increased formation of capillary-like structures of the IEM cells mediated by Stat3 inhibition does not overcome the requirement for activation of the (P41/43)MAPK pathway for capillary outgrowth. Stat3 activity correlates with the LIF-induced expression of the negative feedback regulators of the Janus (JAK) family of tyrosine kinases, SOCS-1 and SOCS-3. These results provide evidence that Stat3 acts as a negative regulator of capillary outgrowth, possibly by increasing SOCS-1 or SOCS-3 expression. The contradictory signals stimulated by LIF could be necessary to control the intensity of the response leading to capillary outgrowth in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signals through gp130 upregulate bcl-x gene expression via STAT1-binding cis-element in cardiac myocytes.

We described recently the activation of the Janus kinasesignal transducer and activator of transcription (JakSTAT) and mitogen-activated protein (MAP) kinase pathways by leukemia inhibitory factor (LIF) through gp130, a signal transducer of IL-6-related cytokines, that transduces hypertrophic signals in cardiac myocytes. In addition, stimulation of gp130 by IL-6-related cytokines is known to ex...

متن کامل

Activation of gp130 transduces hypertrophic signals via STAT3 in cardiac myocytes.

BACKGROUND gp130, a signal transducer of the IL-6-related cytokines, is expressed ubiquitously, including in the heart. The activation of gp130 in cardiac myocytes was reported to induce myocardial hypertrophy. The downstream side of gp130 consists of two distinct pathways in cardiac myocytes, one a Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, the other a mi...

متن کامل

Signal transducer and activator of transcription 3 is required for glycoprotein 130-mediated induction of vascular endothelial growth factor in cardiac myocytes.

Activation of glycoprotein (gp) 130 transduces hypertrophic and cytoprotective signals in cardiac myocytes. In the present study, we have demonstrated that signals through gp130 increase the expression of vascular endothelial growth factor (VEGF) in cardiac myocytes via the signal transducer and activator of transcription (STAT) 3 pathway. After activation of gp130 with leukemia inhibitory fact...

متن کامل

Dual control of neurite outgrowth by STAT3 and MAP kinase in PC12 cells stimulated with interleukin-6.

IL-6 induces differentiation of PC12 cells pretreated with nerve growth factor (NGF). We explored the signals required for neurite outgrowth of PC12 cells by using a series of mutants of a chimeric receptor consisting of the extracellular domain of the granulocyte-colony stimulating factor (G-CSF) receptor and the cytoplasmic domain of gp130, a signal-transducing subunit of the IL-6 receptor. T...

متن کامل

STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction.

Pluripotent embryonic stem (ES) cell therapy may be an attractive source for postinfarction myocardial repair and regeneration. However, the specific stimuli and signal pathways that may control ES cell-mediated cardiomyogenesis remains to be completely defined. The aim of the present study was to investigate (1) the effect and underlying signal transduction pathways of leukemia inhibitory fact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 113 Pt 23  شماره 

صفحات  -

تاریخ انتشار 2000